SCORE Staff Placement

Craig Stuart Sapp
28 November 2012

This document provides a detailed analysis of the SCORE editor’s (version 4.01000-555)
staft’ placement in Encapsulated PostScript (EPS) output, and Section 10 demonstrates
how to calculate exact stafl’ placements within bitmaps converted from these EPS files.
Analysis of the printing method in the SCORE editor consists of two primary stages: con-
tinuous-space vector graphics layout, and then quantization processing. Quantization in
turn can be split into two sub-types: 4000-DPI quantization imposed internally by
SCORE when writing EPS files, and the rendering-space quantization (with a focus on
600 DPI) related to stroke-width adjustment used to create uniformly thick staft lines
when converting vector graphics into bitmapped images. Modeling the two quantization
types allows for pixel-level localization accuracy for staff lines within bitmapped conver-
sions from SCORE EPS files. This model can be used to accurately locate staff lines in
bitmaps using only SCORE PMX data and page margin information, without referenc-
ing the derived bitmap. By extension, pixel-level localization of other graphical objects
such as barlines can be implemented as well, which could for example be used to high-
light measures in images of the notation.

Table of Contents

1 Overview of SCORE PMX data for staff objects.ccceeviiiiiniiininiiiiiicciene, 2
2 SCORE printing variablescccoooiiiiiiiiiiiiiiii 5
3 Default page positions of staff INescoceeviiiiiiniiiiiiniceeee 7
4 Stafl POSItIONING PATAINECTETSveeurieiiieieeiieete ettt ettt ettt ser e s eneesaneeneens 9
5 Basic simulation of SCORE stafl printingccccceeveeviiniinieniiiiieniececceeeee, 11
6 Analysis of SCORE EPS OUtput ...cc.coooiiiiiiiiiiiiicecccceeeeeee e 15
7 Bitmap comparison of simulation to SCORE EPS..........c.ccoociiiiiiiin 19
8 4000-DPI quantization efleCtS.......couiiriiriiiiiiniiiienicceee e 22

8.1 Detailed random quantized staff POSIIONING tESt...c.eevvieriienienieriieiieniieieieeie e 27
9 Setstrokeadjust quantization effects........coovevieriiiiiiniii e 31
10 Pixel localization of staves in TIFF 1magescccccecvvevieriiiiniiniiiniicicicceccceeee 41
Appendix I: Staff/Margin measurements in Iustrator...........ccceovieniniiininiinicnen. 50
Appendix II: 1000 randomly placed StaVeS.......coceevviriierieriiienienieeeeeeeeeee e 52
Appendix III: SCORE binary/ASCII file Parserc.ccocveeviierieriiiineenieeeenieeieeneeeen 57
Appendix IV: Pretty-printer for SCORE PMX dataccceeviieiiiniiiiniiniiiiciccecee 81

Appendix V: Spinning Song PMX datacccceeviieriiiiiiniieniieicniceeeeeeeeee e 88

1 Overview of SCORE PMX data for staff objects.

SCORE represents graphical objects as lists of floating-point numbers. Each object
stored in a data file, or internally in memory, is represented explicitly on the page using
these numbers, which are called parameters. “Parameter one” is the name of the first
parameter, “parameter two” for the second number, and so on. These are usually abbre-
viated as P1, P2, P3, etc.! The positions of numbers in the parameter list indicate their
meanings. When the list is shorter than a particular parameter number, that parameter’s
value is implicitly zero. Note that a zero-valued parameter can also indicate a default set-
ting should be used. For example if P6=0 for staff lines, this means to use 200 for this pa-
rameter.

P1, P2, P3 and P4 for any object in SCORE have consistent meanings. P1 indicates the
graphical object type. Staff lines are objects where P1=8, notes on the other hand would
have P1=1. P2 indicates the staff to which the object belongs. There are default positions
on the page for each staff, so this value also influences the vertical placement of objects on
the page. For example if the object data starts “3 77, this means that the object is a clef
(P1=3), and it is on staff #7 of the page (P2=7).

P3 controls the horizontal position of an object on the page. For items with a left and
right end, P3 is the position of the left end, and P6 controls right end of the object. The
horizontal units are not physical, but instead range from 0.0 at the left margin to 200.0 on
the right margin. When printing at the default scaling, the physical length from P3=0 to
P3=200 is 7.5” (7.5 inches). When scaling the music by 50%, the physical length from 0
to 200 would be 3.25”.

P4 describes the vertical position of an object. For staves, P4 controls the vertical offset of
the staff from its default position on the page. The vertical offset is also controlled by the
vertical-scaling value stored in P5 of staff objects. 'The product P4 * P5 controls the ac-
tual vertical offset from a staff’s default position on the page (excluding page scaling), so
the vertical offset (P4=1, P5=1) is equivalent to the physical offset generated by the pa-
rameter pair (P4=0.5, P5=2).

Other parameters for staves are not particularly important for staff positioning since they
are not used often in standard 5-line staff printing. These extra parameters will not be
considered in the following analysis:

I' SCORE’s parameter terminology and data structure are derived from Music V, created
by Max V. Mathews in the late 1950’s. This data organization also extends into CSound,
which is the modern instantiation of Music V:

http://www.csounds.com/chapterl

* P7 indicates how many staff lines are displayed (starting with staff line 1 at the
bottom of the staff). If P7=0 then use the default setting of 5 lines. P7=—1 will
make the staff invisible (zero staff lines). If P7 is a 3-digit number, then the
100’s digit indicates which staff line on the standard 5-lined staff should be the
bottom of the displayed staff, and the other two digits indicate how many staff
lines. For example “304” means that the bottom line would be positioned
where the 3™ (middle) line of the 5-line staff would normally be placed, and
there are 3 lines above this line (for a total of 4 lines).

* P8 is used to indicate the distance from the bottom of the bottom staff on the
page (P2=1) to the bottom of the bottom staff on a separate SCORE page file
that 1s to be placed above the current page to construct a full score (used for
splitting very large scores across multiple pages).

* P9 is used to store an instrument number. This information is useful for ex-
tracting parts from a full score, where the parts may drop out on systems
where they are resting.

* P10 is an alternate method of positioning staves vertically (as opposed to the
P2/P4/P5 method described below. A non-zero value in P10 indicates the
distance from the bottom of the staff 1 to the bottom of the current staff in
units of inches or centimeters (the measurement unit will be given explicitly in
binary SCORE .MUS files, but is lost when saving SCORE data to ASCII
PMX files). Note that P4 values are ignored if P10 values are non-zero.

* P11 controls the thickness of staff lines and the default thickness for ledger
lines. Ledger lines are two pixels (based on the target print resolution) thicker
than staff lines by default (unless P5 < 0.7, or the ledger lines are associated
with a grace note). The thickness of ledger lines is controlled independently
from the staff thickness by altering P16 for notes (P1=1).

* P12 has no printing purpose. It is used to hide the staff number in the
SCORE editor’s display window.

Further details about staff’ parameters can be found in the SCORE reference manual
(version 3.0). Additional parameters may be defined for the Windows version of SCORE
(starting with P13).

“PMX” 1s a command in the SCORE editor that saves all objects on the page to an
ASCII text file. Typically .PMX will be the file extension used to distinguish from the
binary data of .MUS/.PAG files, or text-based macro files which can include PMX data.
“Parameter MatriX” is the meaning of the abbreviation PMX, since the data looks like a
two-dimensional matrix of numbers. In the resulting text file each line (except for text
objects and embedded PostScript objects which include a second line of plain text) repre-
sents an object as a list of numbers separated by one or more spaces (but not tabs). Figure
2 shows example PMX data for a page of music containing only staves and some text.
Appendix V starting on page 88 contains a long example listing PMX data for a full page
of music notation.

PMX and other text-based macro data files can be read into the SCORE editor using the
REad command. In contrast, binary SCORE data files must be loaded into the editor

with the Get command. PMX data has nearly equivalent content to the binary
.MUS/.PAG files. The only difference is that the binary file format for PMX data also
stores the unit (inches or centimeters) that 1s needed for certain parameters (such as P10
for staves). Note that musical objects can be sorted in any order in PMX/MUS files, not
necessarily in time or spatial order. The order of objects in a file typically represents their
print order (important when printing objects in color), but the Windows version of the
SCORE notation editor adds an extra parameter for the printing order that overrides the
data order in memory or a file.

2 SCORE printing variables

In order to determine the position of staff lines on a page, several variables are specified at
print time. These variables are not stored within the SCORE data file describing a page
of music (MUS or PMX formats). Instead these variables are set from the print menu, or
they can be loaded from a separately stored text file as shown in Figure 1.

* The SIZE print setting controls the scaling of mu-

sic on the page. 1.000 is the default size; 0.5 will Egﬁg EETI:
cause the music to be displayed at 50%, 2.0 will o iigoo
display at 200%, etc. Staff lines will be 7.5” OFFSETS 50 95
(540pt) long when the staff is 200 horizontal EE‘SE%‘STION 1;80
SCORE units long and the SIZE variable is set to LINE width 4

one.? If the size is 0.5, full-length staff lines will be HRRDER/EOOTER None
3.75” long, and if the size is 2.0, full-length staff SETSTROKE Yes

lines will be 15” long. Note that the SIZE value ﬁggiéﬁi?:ﬁﬁ{ 1;0

does not scale the entire page. Margins offsets (see DESC 0

next parameter below) are applied first to move
the origin from the bottom left bottom corner of
the page to the OFFSETS position before the
SIZE parameter is applied to scale the music’s
size.

* OFFSETS controls the width of the left and bottom margins, respectively. Fig-
ure 1 shows the default left margin of 0.50”, and the default bottom margin is
0.75”. Extra fixed offsets are added to these margins when printing EPS files as
described below.

Figure 1: Default SCORE
print parameter file settings.

The RESOLUTION setting gives the target physical printing resolution. The default
resolution is 600 dots per inch. This value is not directly used in the output Encapsulated
PostScript data, which only contains vector graphics; but rather it is used to calculate the
width of line strokes, such as for staff lines and note stems. In this case staff lines have the
LINE_width of 4 pixels at 600 DPI RESOLUTION, or 0.00667” (0.48pt). An extra
0.0007206pt is added to the line width in SCORE EPS output for some reason, which
has no predictable effect on a conversion of the graphical notation to a bitmap. Due to
stroke-adjust quantization effects described in Section 9 starting on page 31, specifying a
4-pixel wide line will actually generate a 5-pixel wide staff line.

The edges of all graphical objects (except for beams which have a separate stroke-width
control in the SCORE preferences file) will be outlined with a line of this thickness (which
will cause each objects’ size to be increased by 0.24pt on all edges from their fill outline).

2 PostScript printing units are in points, so most of the physical length units in this docu-
ment are given in points as well as inches. One inch 1s equivalent to 72 PostScript points

(17=72pt).

In other words, staff lines have a width of 0.48pt, with 0.24pt extending above the un-
stroked line/edge, and 0.24pt extending below the unstroked line/edge. Staff lines do not
have endcaps, so the left and right edges of staff lines do not have an extra horizontal ad-
justment of 0.24pt. Note that the P35 value of staff lines may affect the staffline thickness-
es: 1f P5<0.65, one pixel will be subtracted from a staff line’s width (making the staff lines
4 pixels wide when using 600-DPI rendering).

The PAPER and ROTATE settings control paper selection and orientation but are not
directly relevant to staff positioning. Any paper type or rotation (No = portrait/Yes =
landscape) will still use the bottom left corner of the page as the origin, so all music print-
ed on any paper type will be in reference to this origin. In other words, paper size and
orientation information is not really needed when printing to EPS files in SCORE.
However, if the EPS file is converted to a TIFF image, the height of the page needs to be
known since the origin for bitmaps is traditionally the top left corner rather than the bot-
tom left corner for PostScript files.

3 Default page positions of staff lines

Once the printing variables OFFSETS and SIZE are specified, the actual physical posi-
tions of staves on a page can be calculated. First note that the physical margin from the
left edge of the page to the left-hand side of the staff lines is equal to the first OFFSETS
number (0.5” or 36pt default), plus an additional 0.025” (1.8pt) shift to the right. There-
fore when the left offset is 0.5” (36pt), the actual left margin to P3=0.0 for staves will be
0.525” (37.8pt). The extra shift of 1.8 points may be done within SCORE in order to
provide extra space for system brackets (which actually ends up being 31.464pt—
0.2403603pt = 31.224pt or 0.433667” from left page edge), or braces (30.168pt—0.24pt =
29.928pt or 0.415667” from the left page edge). Since the full length of staff lines is 7.5”
(540pt), the right margin (distance from the right edge of the page to the right side of the
staff lines at P6=200.0) will be 8.5”-7.5"-0.5"-0.025"= 0.475" (34.2pt).

The bottom margin is the second number in the OFFSETS print setting, which is 0.75”
by default. To this margin setting, an extra 4.5pt (0.0625”) offset is also added. There-
fore the default bottom margin is 0.8125” (58.5pt) from the bottom edge of the page to

the center of the bottom line of the first staff when it is in its default position (subtract
0.2403603pt if the default stroke width is applied to the staff line).

Once the bottom margin is specified, the default vertical positions of staves on the page
can be calculated. Staff I is the bottom staff on the page. The center of the bottom line
on this staff'is placed BM+Bx above the bottom edge of the paper, where BM i1s the “Bot-
tom Margin” as specified in the OFFSETS print setting, and Bx is a fixed length of 4.5pt
(0.0625”). Each successive staff number is placed by default 56.7pt (0.7875”) higher than
the previous staff number. This distance is from the center of the bottom line of one staff
to the center of the bottom line on the next staff. In other words, the equation that calcu-
lates the vertical physical position in inches or points for a staff (referenced to the center of
the bottom line on a staff) in its default position is:

Vpos =BM + Bx + (P2-1) * Vx * S

where Vx is the constant default vertical spacing between staves (56.7pt, 0.7875”), P2 is
the staff number (P2=1 for the bottom staff, P2=2 for the next higher staff, etc.), and S is
the SIZE print parameter that scales the page. Note that the scaling factor, S, does not
affect the bottom margin or extra bottom offset values. Here are the vertical positions of
staves from the bottom edge of the page, using the default bottom margin of 0.75” and
default page scaling size of 1.0:

Staff I: BM +Bx + (1 —1)* Vx* 1= BM + Bx = 58.5pt
Staff 22 BM+Bx+ (2—-1)*Vx = 58.5pt + 56.7pt = 115.2pt
Staff 3: BM +Bx+2 *Vx =171.9pt
Staff4: BM + Bx+3 *Vx = 228.6pt

Staff 5 BM +Bx+4 *Vx = 285.3pt

Staff 6: BM +Bx+5 *Vx = 342.0pt
Staff 72 BM +Bx+6 *Vx = 398.7pt
Staff 8: BM +Bx+7 *Vx = 455.4pt
Staff 9: BM +Bx+8 *Vx =512.1pt
Staff 10: BM +Bx+9 *Vx = 568.8pt
Staff 11: BM + Bx + 10 * Vx = 625.5pt
Staff 12: BM + Bx + 11 * Vx = 682.2pt

These positions were verified in Adobe Illustrator where the positions from the bottom
lines of staves to the bottom edge of the page were measured to exactly match the above
calculated values (see Appendix I). The distance between staff lines at the default size 1s
6.3pt (0.0875”), so the height of the default-sized staff from the center of the bottom line
to the center of the top line is 4 * 6.3pt = 25.2pt (0.35”), plus an additional 0.480726pt for
the distance from the bottom edge of the bottom staff line to the top edge of the top staff
line. Thus the center of the top line on staft’ 12 is 682.2pt+25.2pt = 707.4pt above the
bottom edge of the paper. If the paper is letter-sized (8.5”x11”), then the page height is
792pt, which means that the distance between the top edge of the page and the center of
the top line of staff 12 is 792pt—707.4pt = 84.6pt. As an aside, note that SCORE quantiz-
es the vertical space between adjacent staff lines to 175 dots at 4000 DPI in EPS output.

The horizontal position of the default left staff position is simpler to calculate:
Hpos = LM + Lx

where LM 1is the “Left Margin” as specified in the OFFSETS print setting, and Lx is a
fixed left margin offset to the right of 1.8pt (0.025”). The length of the staff at the default
size 1s 7.5” (540pt), so the horizontal position of the right side of the full-length staff will
be 7.5” greater than Hpos.

4 Staff positioning parameters

Five parameters of staff objects (P1=8) control the position of standard 5-line staves on the
page (unless P10 is non-zero).
* P2 is the staff number that controls the default vertical position of the staff on the
page as described above.
* P3 is the horizontal position of the left side of the staff in terms of horizontal
SCORE units.
* P4 is the vertical position of the staff in terms of vertical SCORE units (vertical
scale steps, or /2 of the distance between staff lines).
* P5 is the scaling of the staff, which adjusts the vertical height of the staff but does
not affect the horizontal length of the staff (which is controlled by P3/P6).
* P6 is the horizontal position of the right side of the staff in terms of horizontal
SCORE units. If P6=0, then this means that P6 is the default value of 200 for the
right margin.

SCORE horizontal units range from 0.0 for the left side of the default staff positions to
200.0 at the right side of the default staff position. These values are not physical, but ra-
ther are used to describe ratios of the final physical length. For example, to indent the
first system, P3 may be set to 15.0, this means that there is an additional indent from the
left margin equivalent to 15/2% = 7.5% of the length for the default staff. At the default
length at the default size, this would be 7.5” * 0.075 = 0.5625” (40.5pt) to the right of the
left margin (including the left margin extra fixed offset of 0.025”). P6 controls the position
of the right side of the staff. So if P6 = 200.0 — 15.0 = 185.0, then the right side of the
default staff length would be an extra 0.5625” to the left of the right margin of the paper.

P4 is the vertical adjustment from the default position for a staff. The physical units of P4
are dependent on two scalings: (1) the SIZE print setting and (2) the P5 value which is the
vertical scaling of the staff. In other words, if P4=2 and P5=1 and the SIZE print setting
1s 1.0, then the staff will be raised on the page by 6.3pt. If P4=4 and P5=0.5 and SIZE is

1.0, then the staff would also be raised on the page by 6.3pt.

As an aside, note that at the default vertical scaling P5=1, the units of P4 are 7/6 the size
of the horizontal units of P3. Or in other words, if P5=6/7=85.7142857142857..., the
vertical (P4) and horizontal (P3) units have the same physical length. If you want a verti-
cal line to have the same physical length as a horizontal line, then the equation would be:
AP4 = AP3 *6/7 / P5. For example, a 1-inch line has a horizontal length of 1/7.5*200
=26.667 P3 units. This would be 22.857 P4 units when the vertical scaling P5 is 1.0.

Considering these 5 staff parameters, the full equation for calculating the physical posi-
tion of the left edge of a staff, referenced from the center of the bottom line of the staff to
the bottom edge of the page is:

Vpos = BM + Bx + [(P2-1) * Vx +P4 * P5 * Step | * S

10

Where BM = bottom margin from OFFSETS print setting, Bx is a fixed distance of 4.5pt
(0.0625”), P2 is the staff number, Vx is the default distance between the bottom line of
successive staff lines (56.7pt, 0.7875”), P4 is the vertical offset in SCORE vertical units,
P5 is the staff scaling, Step is the default distance between staff lines divided by 2 (3.15pt,
0. 04375”), and S is the SIZE print setting. Note that if P5=0, then use a value of 1 for
P5.

The vertical position of the top of a particular staff is given by the following equation, ref-
erenced to the center of the top of a 5-line staff:

Vtop = Vpos + Step *8 * P5 * S

Vpos and Vtop are both in reference to the center of staff lines. To calculate the vertical
position of the optical boundary of the bottom and top of the staff, subtract /2 of the
stroke width for the staff lines which is 0.4807206pt/2 = 0.2403603pt for the default
thickness of 4 pixels at 600 DPI (plus 0.00072pt):

Optical staff bottom edge = Vpos — Pixels/DPI/2 inches — /2
Optical staff top edge = Vtop + Pixels/DPI/2 inches + €/2

where DPI is the dots per inch RESOLUTION setting in the print menu, and Pixels is
the LINE_width print setting. The constant € = 0.0007206pt (about 0.00001”) is an extra
width SCORE EPS output adds to the line thickness (perhaps as a float round-off er-

ror).

The horizontal position of the left side of a staff line 1s given by the fully generalized equa-
tion:

Hpos = LM + Lx + S * (Len * P3/200)

Where Len is the default length of staff lines, which is 7.5” (540pt). The fully generalized
equation that calculates the distance from the left edge of the paper to the right side of a
staff 1s similarly:

Hright = LM + Lx + S * (Len * P6/200)

If P6=0.0, then use the default value of 200.0 for the full-length width. Hpos and Hright
do not need extra adjustment related to the line stroke-width, although the addition of
barlines at a staf edge may increase the apparent width of the staff due to stroking effects
on the barlines.

5 Basic simulation of SCORE staff printing

Based on the description of the physical placement of staves on the page in SCORE in
the previous sections, the following PERL script will accept any SCORE PMX data file
(in ASCII format) and output a US-Letter sized page with identical placement of staves
on the page when compared to the SCORE output (excluding quantization errors ad-

dressed in later sections).

scrstaff.pl

#!/usr/bin/perl
use strict;

Print variables:

my $S = 1.0; #
my S$LM = 0.50 * 72.0; #
my $BM = 0.75 * 72.0; #
my S$SDPI = 600; #
my SLINE width = 4; #
my S$Stroke = (1.0 * SLINE width)

SStroke += 0.0007206;

Constants:

my SLx = 0.025 * 72.0; #
my S$Bx = 0.0625 * 72.0; #
my SLen = 7.5 * 72.0; #
my $Step = 0.04375 * 72.0; #
my SVx = 0.7875 * 72.0; #
print "%$!PS-Adobe-2.0 EPSF-1.2\n"; #
print "$Stroke setlinewidth\n"; #
print "gsave\n";
while (my $line = <>) {
next if $line !~ /78/;
printStaffObject ($line) ;
}
print "grestore\n";
exit (0);
FHEFFHAFH AR A SRR S
##
printStaffObject -- Place a staff
PMX data.
##
sub printStaffObject {
my ($line) = @ ;
chomp S$line;
my @data = split(/\s+/, S$line);

global music scaling

left margin

right margin

target print resolution

pixel width of line strokes

/ $DPI * 72.0; # stroke width

match behavior in SCORE

left margin buffer

bottom margin buffer

default full length of staff
vertical diatonic step size

default spacing of successive staves

print PostScript marker
set line stroke width

on the page based on its SCORE

12

my ($P1, $P2, S$P3, $P4, $P5, S$P6) = @data;
SP1 *= 1; $P2 *= 1; $P3 *= 1; $P4 *= 1; $P5 *= 1; $P6 *= 1;
$P5 = 1.0 if $P5 == 0.0;
$P6 = 200.0 if $P6 == 0.0;
my Shpos = S$IM + $Lx + $S * (SLen * $P3 / 2.0);
my Swidth = $S * ($Len* ($SP6-$P3)/200.0);
my Svpos = S$BM + $Bx + $S* (($P2-1)*SVx+SP4*$P5*S$Step) ;
my Slinespacing = $Step * 2 * $S * $P5;
print " gsave\n";
print " $SCORE%", join(" ", @data), "\n";
print " Shpos $vpos translate\n";
printStafflLines (5, $linespacing, S$width);
print " grestore\n";
}
FHEFFHAFH RS SHAR AR SES S
##
printStafflines -- print the specified number of lines with the given
#4# vertical spacing between lines. Starting point before calling
this function is (0, 0).
##
sub printStafflines {
my ($Scount, S$vspace, $Swidth) = @ ;
my Shleft = 0.0;
my Shright = $hleft + $width;
my Svpos = 0.0;
for (my $i=0; $i<$count; $i++) {
Svpos = $vspace * $i;
print " Shleft $vpos moveto\n";
print " Shright $vpos lineto\n";
}
print " stroke\n";
}

Figure 2 shows example SCORE PMX data for staves in their default positions on a page
that can be input into the serstaff program above to generate the EPS file output found
further below. A visual representation of the data after being converted to EPS by
SCORE is displayed in Appendix I (page 34).

13

8 1 0

8 2 0

8 3 0

8 4 0

8 5 0

8 6 0

8 7 0

8 8 0

8 9 0

8 10 ©0

8 11 0

8 12 0

t 12 56.360 20. 1 1.327 00 00O
_OODefault staff positions and sizes
t 12 40.268 15. 1 1.000 0 0 0 0O
_0OOPage size 8.5"x11", left margin 0.5", bottom margin 0.75"

Figure 2: SCORE PMX data used to generate the page in Appendix I.

Lines starting with “8” are staff objects. Lines starting with “t” are two-line text objects
(there “t” translates to P1=16 in the SCORE editor or binary PMX data), with the text
for the object placed on the second line. Font “ 00 at the start of the text string means
Times-Roman. Here is the output of the serstaff program given the PMX data found in

Figure 2:

%! PS-Adobe-2.0 EPSF-1.2
0.4807206 setlinewidth
gsave
gsave
$SCORE%8 1 0
37.8 58.5 translate
0 0 moveto
540 0 lineto
0 6.3 moveto
540 6.3 lineto
0 12.6 moveto
540 12.6 lineto
0 18.9 moveto
540 18.9 lineto
0 25.2 moveto
540 25.2 lineto
stroke
grestore
gsave
$SCORE%8 2 0
37.8 115.2 translate
0 0 moveto
540 0 lineto
0 6.3 moveto
540 6.3 lineto
0 12.6 moveto
540 12.6 lineto
0 18.9 moveto
540 18.9 lineto
0 25.2 moveto
540 25.2 lineto
stroke
grestore
gsave
$SCORE%8 3 0
37.8 171.9 translate

0 0 moveto
540 0 lineto
0 6.3 moveto
540 6.3 lineto
0 12.6 moveto
540 12.6 lineto
0 18.9 moveto
540 18.9 lineto
0 25.2 moveto
540 25.2 lineto
stroke

grestore

gsave
$SCORE%8 4 0
37.8 228.6 translate
0 0 moveto
540 0 lineto
0 6.3 moveto
540 6.3 lineto
0 12.6 moveto
540 12.6 lineto
0 18.9 moveto
540 18.9 lineto
0 25.2 moveto
540 25.2 lineto
stroke

grestore

gsave
$SCORE%8 5 0
37.8 285.3 translate
0 0 moveto
540 0 lineto
0 6.3 moveto
540 6.3 lineto
0 12.6 moveto
540 12.6 lineto

0 18.9 moveto
540 18.9 lineto
0 25.2 moveto
540 25.2 lineto
stroke

grestore

gsave
$SCORE%8 6 0
37.8 342 translate
0 0 moveto
540 0 lineto
0 6.3 moveto
540 6.3 lineto
0 12.6 moveto
540 12.6 lineto
0 18.9 moveto
540 18.9 lineto
0 25.2 moveto
540 25.2 lineto
stroke

grestore

gsave
$SCORE%8 7 0
37.8 398.7 translate
0 0 moveto
540 0 lineto
0 6.3 moveto
540 6.3 lineto
0 12.6 moveto
540 12.6 lineto
0 18.9 moveto
540 18.9 lineto
0 25.2 moveto
540 25.2 lineto
stroke

grestore

gsave
$SCORE%8 8 0
37.8 455.4 translate
0 0 moveto
540 0 lineto
0 6.3 moveto
540 6.3 lineto
0 12.6 moveto
540 12.6 lineto
0 18.9 moveto
540 18.9 lineto
0 25.2 moveto
540 25.2 lineto
stroke

grestore

gsave
$SCORE%8 9 0
37.8 512.1 translate
0 0 moveto
540 0 lineto
0 6.3 moveto
540 6.3 lineto
0 12.6 moveto
540 12.6 lineto
0 18.9 moveto
540 18.9 lineto

0 25.2 moveto
540 25.2 lineto
stroke

grestore

gsave
$SCORE%8 10 0
37.8 568.8 translate
0 0 moveto
540 0 lineto
0 6.3 moveto
540 6.3 lineto
0 12.6 moveto
540 12.6 lineto
0 18.9 moveto
540 18.9 lineto
0 25.2 moveto
540 25.2 lineto
stroke

grestore

gsave
$SCORE%8 11 0
37.8 625.5 translate
0 0 moveto
540 0 lineto
0 6.3 moveto
540 6.3 lineto

14

0 12.6 moveto
540 12.6 lineto
0 18.9 moveto
540 18.9 lineto
0 25.2 moveto
540 25.2 lineto
stroke

grestore

gsave
$SCORE%8 12 0
37.8 682.2 translate
0 0 moveto
540 0 lineto
0 6.3 moveto
540 6.3 lineto
0 12.6 moveto
540 12.6 lineto
0 18.9 moveto
540 18.9 lineto
0 25.2 moveto
540 25.2 lineto
stroke

grestore

grestore

15

6 Analysis of SCORE EPS output

As a comparison to the simulated graphical output generated in the last section, the fol-
lowing EPS code represents a single staff at the bottom of the page. This is equivalent to
the first staff drawn in the above PostScript code. The SCORE PMX data for the follow-
ing EPS code 1s:

8 10

where P1=8 means a staff object, P2=1 means staff #1, and all other parameters are set to
zero (which may mean use the default setting, such as P6 and P5 in the case of staff ob-
jects).

This program contains a section of code at the start of the file with function defines and
aliases. For example “/m /moveto load def” is a function definition which creates and
alias “m” which can be used in place of the built-in function “moveto”. Note that there is
an extra space at the start of each line. This i1s added in SCORE EPS output to avoid

problems caused by end-of-line differences on MS-DOS/Windows and Apple systems.

PS-Adobe-2.0 EPSF-1.2

%$%Creator: SCORE (tm) Ver. 4.00, Serial # 0
Title: SCORE.MUS

%$%BoundingBox: 37 57 579 85

$%DocumentFonts: (atend)

$%EndComments

/scoredict 200 dict def scoredict begin
save

/m /moveto load def /1 /lineto load def
/setstrokeadjust where
{ pop true setstrokeadjust }
{ /m { transform .25 sub round .25 add exch .25 sub round .25 add exch
itransform moveto } bind def
/1 { transform .25 sub round .25 add exch .25 sub round .25 add exch
itransform lineto } bind def } ifelse
/tr /translate load def /aw /awidthshow load def
/e /eofill load def /s /stroke load def /g /gsave load def /r
/grestore load def
/f /findfont load def /sf /setfont load def
/mkf /makefont load def /lw /setlinewidth load def
newpath /SCORE {
/size .01800 def /wdl 26.7067 def
size dup scale wdl 1w 1 setlinejoin
/1lmar 2100 def /bmar 27250 def
lmar bmar tr} def
g SCORE
0 -24000 m
30000 -24000 1
0 -23650 m

16

30000 -23650 1
0 -23300 m
30000 -23300 1
0 -22950 m
30000 -22950 1
0 -22600 m
30000 -22600 1
S

showpage

r restore

end

$%Trailer

o
$%DocumentFonts:

The simple function definitions given in the header are:

/m /moveto load def
/1 /lineto load def
/tr /translate load def
/aw /awidthshow load def
/e /eofill load def
/s /stroke load def
/g /gsave load def
/r /grestore load def
/f /findfont load def
/sf /setfont load def
/mkf /makefont load def
/1w /setlinewidth load def

The main non-trivial function definition is / SCORE, which is used to do basic setup at
the start of a page:

/SCORE {
/size .01800 def
/wdl 26.7067 def
size dup scale
wdl 1w
1 setlinejoin
/1lmar 2100 def
/bmar 27250 def
lmar bmar tr

} def

First the units for the page are set so that “1” represents 0.01800pt rather than Ipt. In
other words the point is divided into 55.555555... units. The reason for this scaling is
that SCORE prints internally with a 4000-DPI quantization, which could be residual be-
havior from the plotting method that SCORE used for printing before PostScript. The
scaling of 0.018 for the page makes each integer unit (pixel) equal to 1/4000”: 0.018
points/unit / (72 points/inch) = 1/4000 inch/unit, which therefore is a resolution of
4000 DPIL. In any case, since 55.5555... 1s a repeating fraction, there will be round-off

17

error < 0.00025” (0. 0000034722pt) from the original layout precision in the data since
all SCORE position coordinates in the EPS file are integers at 4000 DPI.

Besides adjusting the page scale by 0.018 to emulate 4000 DPI, the /SCORE function
moves the origin up from the bottom left edge of the page to (2100, 27250). Since the
printing units are equivalent 1/4000”, the origin is moved to (0.525”, 6.8125”). The hor-
izontal value of 0.525” matches the measured distance between the left edge of the paper
and the left side of the staves when they are in their default positions. The reason for the
origin’s vertical position of 6.8125” above the bottom edge of the page is unknown. It is
equivalent to the bottom margin specified in the print menu (0.75” is the default value
used in this case, plus 0.0625” fixed vertical margin offset plus 6.0”). Again, this 6” verti-
cal offset from the bottom margin may be a remnant of the printing process before Post-
Script was used. It also may be used to minimize the maximum page coordinate value
from 44000 to 24000 for some reason (such as to keep coordinate values less than a
signed short which is 32767) which may have been necessary for the pen-plotting method
used to print graphical music notation from SCORE prior to PostScript.

The line width that is used to stroke the staff lines is set to 26.7067 units or 0.4807206pt.
The expected width 1s 0.48pt. The significance of the extra 0.0007206pt is uncertain, but

may be related to the internal quantization in SCORE EPS position calculations, since
0.0007206pt is 0.0000100083333”. Since 1/4000” is 0.00025”, the difference of

0.0007206 is equivalent to 1/24.979184 of the length 1/4000”. Excluding the round-off
error of 0.0000006pt, the difference would be exactly 1/25 of a 4000 DPI pixel. So the
default width of a line stroke in SCORE EPS output is 0.48pt plus 1/25 of 1/4000”,
which is 0.48072pt plus a round-off error of 0.0000006pt, making the final thickness
0.4807206pt. In practice this small addition to the line width is irrelevant due to the
stroke-adjustment process described in Section 9 (starting on page 31).

When the print setting SETSTROKE is set to “YES” (see Figure 1 on page 5), the fol-
lowing code is inserted into SCORE EPS output to redefine the “1” and “m” drawing
functions. The code will switch drawing points into the rendering coordinate system,
then it does a quarter pixel shift followed by a rounding to the nearest pixel before shifting
back a quarter pixel and switching back into the PostScript coordinate system.

/setstrokeadjust where
{ pop true setstrokeadjust }
{ /m {
transform
.25 sub round .25 add exch
.25 sub round .25 add exch
itransform moveto
} bind def
/1A
transform
.25 sub round .25 add exch
.25 sub round .25 add exch
itransform lineto
} bind def
} ifelse

18

Such code gives a consistent pixel width to stroked lines and is used by most PostScript
renderers “to improve line thickness consistency in lower resolutions.”® Official descrip-
tion and motivation of the setstrokeadjust feature which this code is copied from can be
found at Adobe’s website.* Section 9 starting on page 31 goes into more detail about the
significance of the above code snippet.

3 http://www.creativepro.com/article/acrobat-tips-graphics-in-pdfs?page=0%2C2
* http:/ /partners.adobe.com/public/developer/en/ps/sdk/5111.Stroke_Adj.pdf, “Emu-
lation of the setstrokeadjust Operator” Technical Note #5111, 31 March 1992, Adobe

Systems, San Jose, California.

19

7 Bitmap comparison of simulation to SCORE EPS

A useful method for analyzing the simulated staff printing generated by the serstaff pro-
gram listed in Section 1 is to convert the SCORE Encapsulated PostScript file into a bit-
mapped image, convert the simulated printing result to a bitmapped image, and then ex-
amine differences between the two images by comparing the pixels between the two im-
ages. To generate a bitmap from an EPS file, GhostScript is a good choice. GhostScript

1s typically installed on Linux computers by default (and accessible via the “gs” com-
mand-line program).

To install GhostScript on an Apple OS X computer, you should first install MacPorts.?
Once MacPorts is installed, type this command in /Applications/ Utilities/ T'erminal.app:

sudo port install ghostscript

After installing GhostScript, the gs command should be accessible. Type the following
command in the terminal to see if the gs program can be found in the command search
path list:

which gs
The following (or similar) text should then be displayed:
/usr/bin/gs

If no text 1s displayed, then GhostScript is not likely to be installed on the computer. If
GhostScript 1s installed, you can convert an EPS file into a TIFF image with this terminal
command:

gs -r600 -dNOPAUSE -dBATCH -sPAPERSIZE=letter \
-sDEVICE=tifflzw -sOutputFile=output.tif input.eps

This command will convert input.eps into output.tif. The options given to gs are:

—r600 convert to 600 DPI bitmap
~dNOPAUSE —-dBATCH don’t go into interactive mode with the gs interpreter
~SPAPERSIZE=letter set the paper size to US Letter. This is required, since

SCORE does not store the paper size in its output EPS
file, and gs usually uses A4 as the default paper size

-sDEVICE=tifflzw output content is a TIFF image using LZW compression
~sOutputFile=output.tif | et output filename to output.tif
input.eps the input EPS file

> Install MacPorts from the website http://www.macports.org by downloading and in-

stalling the most recent installation package for your particular version of OS X, such as:
https://distfiles.macports.org/MacPorts/MacPorts-2.1.0-10.7-Lion.pkg

which would be the installation file for MacPorts version 2.1.0-10.7 for OS X Lion.

20

The following PERL script, called maketiff; can be used to convert EPS files into TIFF im-
ages without the need to remember all of the GhostScript options:

maketiff.pl

#!/usr/bin/perl
use strict;

foreach my $file (QARGV) {
convert ($file);

}

sub convert {

my ($file) = @ ;

my Sbasename = $file;

S$basename =~ s/\.[".]1*//;

my Sgsopts = " -r600"; # 600 dpi

Sgsopts = " —-dNOPAUSE -dBATCH"; # non-interactive use of GhostScript
Sgsopts = " -sPAPERSIZE=letter"; # use 8.5" by 11" paper

Sgsopts .= " —-sDEVICE=tifflzw"; # B&W TIFF with LZW compression
Sgsopts .= " -sOutputFile=S$basename.tif";

my Sresult ‘gs S$Sgsopts S$file’;
print "gs $gsopts $file\n";
print S$result;

The convert, compare and composite commands, which are part of the ImageMagick
package, can be used to examine differences between two image files.® These programs
are typically pre-installed on Linux systems, and can be installed using MacPorts in OS X
with the following command:

sudo port install ImageMagick

The first comparison method uses composite to subtract the two images from each oth-
er. Then the convert command is used to switch black/white.

composite filel.tif file2.tif -compose difference output.png
convert output.png —negate output.tif

The output file in the composite command cannot be a TIFT file; otherwise, the entire
image is black for some reason (probably related to the input file being only black & white
and not grayscale or color). So in this case the intermediate output is saved to a PNG file
that i1s then negated and converted into the final TIFF file. An alternate method of dis-

6 Documentation for these programs can be found on the web at:
http://www.imagemagick.org/script/convert.php,
http://www.imagemagick.org/script/compare.php,
http://www.imagemagick.org/script/composite.php

21

playing differences is with the compare command. This command highlights differences
using red pixels along with unaltered pixels when they match between the two images:

compare filel.tif file2.tif output.png
convert output.png output.tif

Figure 3 shows the resulting difference image comparing the TIFF image of the SCORE

PMX data found in Figure 2 which is printed directly from SCORE with the output from
the serstaff PERL script. All pixels (at 600 DPI resolution) are equivalent between the two
images, other than the text at the top of the page, which is ignored by the serstaff program.

Default staff positions and sizes Default staff positions and sizes
Page size 8.5"x11", left margin 0.5", bottom margin 0.75" Page size 8.5"x11", left margin 0.5", bottom margin 0.75"

Figure 3: The left image represents the output SCORE EPS file using the PMX data from Figure 2. The right im-
age shows the difference between the SCORE EPS output and the simulated EPS output found at the end of Section 1.
The simulation was accurate to the pixel in placing the staff lines since there are no pixels differences showing up in the
image on the right.

22

8 4000-DPI quantization effects

The exact 600-DPI alignment between the two comparison images in the previous sec-
tion turns out to be a coincidence. A more complicated example is used for evaluation
with randomly positioned staff lines which shows small differences between SCORE EPS
files and the simulated EPS output from the serstaff program. Figure 4 shows the input
SCORE PMX data for the following test of a wider range of staff placements.

8 6 20 -23 3.00 178.60
8 2 0 11

8 4 120 0 .25 180.00
8 7 0 0 2.00

8 8 101.45 0 .00 102.36
8 9 0 0 3.00 100.00
8 10 100 -6 3.00

8 1 0

8 5 0 0 .00 10.00
8 6 40 0 .75

8 11 45.63 0 4.00 95.24
8 12 -3 0 .00 30.00
t 12 111.01 14 1 1.327 0000 O
_OORandom staff placement test

Figure 4: SCORE PMX data for a set of randomly placed staff lines.

Figure 5 shows several staff lines that differ by one pixel due to quantization effects. The
differences are caused by the SCORE editor printing method that imposes a quantization
of 4000 DPI when printing an EPS file. When this 4000-DPI quantization rounds in
such a way that its 600 dpi rounding will be different from the pre-quantized position
(about 1/6 of the time for random coordinates), there will be a one-pixel discrepancy be-
tween the two bitmap-generating methods.

Random staff placement test Random staff placement test

Figure 5: The left image show randomly placed staff lines created from the SCORE PMX data listed in
Figure 3. The right image shows the difference between the SCORE EPS and simulated EPS after both
are converted into 600 DPI images. Notice the occasional one-pixel difference between the two images
caused by SCORE’s 4000-DPI quantization.

23

To correct for the 4000-DPI quantization used by the SCORE editor to print EPS files,
a revised version of serstaff 1s given below. This version of the staff-printing script uses the
SCORE EPS method of first switching to a 4000-DPI coordinate system where the origin
1s shifted to the left margin and six inches above the bottom margin, and then outputting
quantized coordinates in the resulting EPS file.

scrstaffq.pl

#!/usr/bin/perl

scrstaffqg = Print staff lines from SCORE PMX data, applying 4000 DPI
quantization. Use -Q option to turn off the quantization.

Only one vertical position quantized incorrectly from a test set
of 1000 staves:

8.000000 2.000000 134.886353 -5.738704 1.465246 195.576492
4th line of staff is:

20232 -20782 m

29336 -20782 1
but should be:

20232 -20783 m

29336 -20783 1

S oo S SR SR SR S SR e e 3R SR SE o

use strict;
use POSIX;

use Getopt::Long;

my Snoquantize = 0;
Getopt::Long::Configure ("bundling") ;
GetOptions ('Q' => \Snoquantize); # -Q means turn off 4000-DPI quantization

Command-line options:
my Squant4000 = !$noquantize; # simulate SCORE EPS quantization at 4000 DPI

SCORE print menu variables:

my $S = 1.0; # global music scaling

my S$LM = 0.50 * 72.0; # left margin

my $BM = 0.75 * 72.0; # right margin

my SDPI = 600; # target print resolution

my SLINE width = 4; # pixel width of line strokes

my SStroke = (1.0 * SLINE width) / S$DPI * 72.0; # stroke width

Constants:

my SLx = 0.025 * 72.0; # left margin buffer

my S$Bx = 0.0625 * 72.0; # bottom margin buffer

my SLen = 7.5 * 72.0; # default full length of staff

my S$Step = 0.04375 * 72.0; # vertical diatonic step size

my SVx = 0.7875 * 72.0; # default spacing of successive staves

my $dpi72to4000 4000.0 / 72.0; # conversion factor from points to 4000 DPI
my Shoffset4000 = (SLM + S$SLx) * $dpi72to4000; # should be 2100
my Svoffsetd4000 = ($SBM + $Bx + 6 * 72) * $dpi72to4000; # should be 27250

$Stroke += 0.000720

6; # match line thickness behavior in SCORE

$Stroke *= $dpi72to4000;
Variables for keeping track of the stroke width which

my $LW = $Stroke;

my $SoldLW = $Stroke; #

print "%$!PS-Adobe-2

.0 EPSF-1.2\n"; # print PostScript marker

print PostScript functions:
print "/m {moveto} def\n";
print "/1 {lineto} def\n";
print "/s {stroke} def\n";

is needed since gsave/grestore are not used.

24

print "/lw {setlinewidth} def\n";
print "/tr {translate} def\n";

print "\ngsave\n";
print 1.0/$dpi72t04000, "™ dup scale\n";
print "Shoffset4000 $voffsetd4000 tr\n";
print "SLW lw\n";

coordinates from 72 DPI to 4000 DPI

while (my $line = <>) {
next if $line !~ /"8/;
printStaffObject ($1line) ;
}

print "grestore\n";
print "showpage\n";

exit (0);

FHEHAHAAF AR AA RS AR SRS

##
printStaffObject -- Place a staff on the page based on its SCORE
#4# PMX data.
##
sub printStaffObject {
my ($line) = @ ;
chomp S$line;
my @data = split(/\s+/, S$line);
my ($P1, $P2, S$P3, $P4, $P5, S$P6) = @data;
$P1 *= 1; $P2 *= 1; $P3 *= 1; $P4 *= 1; $P5 *= 1; $P6 *= 1;
$P5 = 1.0 if $P5 == 0.0;
$P6 = 200.0 if $P6 == 0.0;
my Swidth = $S * (SLen* ($P6-$P3)/200.0);
my Shlpos = $SLM + SLx + $S * ($Len*$P3/200.0);

my S$Svpos SBM + S$Bx + $S* ((SP2-1)*S$SVx+SP4*SP5*S$SStep) ;
my Slspace = $Step * 2 * $P5 * $S; # spacing between staff lines

scale to 4000 DPI coordinates (from 72 DPI coordinates):

Shlpos = S$hlpos * $dpi72to4000;

Svpos = Svpos * $dpi72to04000;

Swidth = S$Swidth * $dpi72to4000;
= *

Slspace $lspace $dpi72t04000;

25

print the original SCORE PMX data for the staff:
print "$SCORES%", join("™ "™, @data), "\n";

if the stroke width has changed, print it. This code is hard-coded
and shoudl be geralize. But 20.03 is equal to 3 pixels at 600 dpi

(one less than default staffline width), plus a small extra amount.
SLW = $Stroke;

SILW = 20.03 if $P5 < 0.65;

if (SLW != $oldLW) {
printf (" %$.41f 1lw\n", SLW);

$oldLW = SLW;
}

quantize new origin (6" above bottom right margin origin)
my Shoffset4000g = int (Shoffset4000) ;
my Svoffset4000g = int ($voffsetd4000);

print the staff on the page according to the PMX parameters:
printStafflLines (5, $hlpos-Shoffset4000g, Swidth, S$vpos-$voffsetd000q, $P5);

FHEFFHAHH AR HAS SRS H S

##

printStafflines -- print the specified number of lines with the given
#4# vertical spacing between lines.

##

sub printStafflines {
my ($Scount, S$hlpos, S$width, $vbottom, $P5) = @ ;
my Shshift = 0.00075; # hack value to fix 22 /1000 gquantizations
#Shshift = 0.0; # hack value to fix 22 /1000 gquantizations

variables for quantized versions of values:

my Shlposqg = Shlpos;

my Svbottomg = $vbottom;

my S$widthg = Swidth;

Shlposqg -= 0.001 if Shlposg < 0;

Shlposqg += 0.001 if Shlposg > 0;

if (Squant4000) {
Shlposqg = int (Shlposq);
Swidthg int (Swidthgqg) ;
Svbottomg int (Svbottomq) ;

}
my ($vpos, $vposq);
my Svorigin = $vbottom;

The bottom staff line of the staff is at vertcial unit "3" in SCORE.
Shift the origin down 3 steps from the bottom line of the staff.

the diatonic step is 175 units at 4000 DPI (3.15pt)

my Sdiatonicstep = 175 * $P5;

S$vorigin = $vorigin - 3.0 * Sdiatonicstep;

print "% Diatonic step: S$diatonicstep\n";

26

print staff lines at diatonic steps 3, 5, 7, 9, 11:
for (my $i=3; $i<=11; $i+=2) {

Svpos = S$Svorigin + $i * $diatonicstep;

Svposqg = $vpos;

suppress quantization problems near integers
Svposg -= 0.0001 if $vposq < 0;
Svposqg += 0.0001 if $vposq > O0;

Svposqg = int ($vposqg) if $quant4000;
my $hrposq = $width + S$hlpos;

suppress quantization problems near integers
Shrposqg -= 0.0001 if Shrposg < 0;
Shrposqg += 0.0001 if Shrposqg > O0;

Shrposqg = int (Shrposg + $hshift) if $quant4000;

if (!$Squant4000) {
avoid small numbers such as -1e8 when not quantizing:
Shlposg = 0 if S$hlposqg =~ /e/i;
Shrposqg 0 if Shrposqg =~ /e/i;
Svposqg 0 if $vposg =~ /e/i;

}

print " S$hlposqg $vposq m\n";
print " S$hrposqg $vposq 1\n";
}

print " s\n";

Figure 6 shows a 600-DPI difference analysis when printing the PMX data from SCORE
and from scrstaffg. In this case there are now no pixel differences between the two output
methods, and the 4000-DPI quantization effect seen in Figure 5 is now removed.

Random staff placement test Random staff placement test

Figure 6: EPS output for the PMX data from Figure 4. Image on the right shows the difference between the
quantized simulated output compared to the SCORE EPS output. Quantization error pixels from Figure 5 are no
longer present.

27

Using a more extensive random test described in Section 8.1, only one vertical position

on the fourth staff line of the following PMX data is off by one 4000-DPI pixel:

8.000000 2.000000 134.886353 -5.738704 1.465246 195.576492

The vertical position of the fourth line of the staff is at -20782 in the 4000-DPI coordinate
system, when the output from SCORE is at -20783. 'This is out of a test set of 1000
staves, or 5000 staff lines (so a measured error rate of 0.02%).

An additional complication added to the quantized version of the serstaffg program is that
SCORE will shrink the stroke width for staves when P5 is less than 0.65. For example
when P5=1, the line thickness is 26.7067 SCORE printing units (0.4807206pt, or
0.006676675”). When P5=0.25, the thickness is 20.03 SCORE printing units (0.36054pt,
or (0.0050075”). In other words, when P5 is less than 0.65, the pixel width of staff lines
will be decreased by 1 pixel. For example a 0.4807206pt stroke width is 4.006005 pixels
at 600 DPI, while 0.36054pt 1s 3.0045 pixels at 600 DPI.

8.1 Detailed random quantized staff positioning test

To exhaustively verify the quantization boundaries, the following PERL script was used
to generate truly (quasi-random staff positions. This program generates random values
for P2-P6 of staff line objects. Figure 7 shows sample output from makerandomstaff: the
text on the left lists 26 of the random staff objects, and the image on the right of the figure
shows the graphic result of placing 1000 randomly generated staves on a page.

makerandomstaff.pl

#!/usr/bin/perl
my Scount = 1000;
for ($i=0; $i<Scount; Si++) {

my SP1 = 8; # P1=8 means staff object

my $P2 = int(rand(12))+1; # staff number

my S$SP3 = rand(200); # left horizontal position

my S$SP4 = rand(20) - 10; # vertical offset

my $SP5 = rand(3); # vertical scale

my $SP6 = rand(200); # right horizontal position

if (Sp6 < $p3) { # Put $P3 and $P6 is correct order

my Stemp = $p6;
$p6 = $p3;
$p3 Sptemp;

printf ("$f $f $f $f $f $f\n", $P1, S$P2, $P3, $P4, S$P5, $P6);

11 6.198888 9.573973 0.283635 168.128405
11 2.873254 -4.797876 2.927321 70.601575
7 87.639369 7.994754 0.598376 165.502491
7 41.646249 2.260639 0.923335 81.354952
12 0.694142 8.659682 1.671497 9.091288

7 141.401669 3.957960 1.272665 156.293134
6 56.481524 4.920927 0.341730 167.857785
10 72.348165 0.396136 1.237993 160.695259
6 33.471906 2.824829 2.398684 35.839999

1 8.250568 7.964336 0.584617 174.530481
12 32.757540 9.446832 2.429939 87.284526
10 162.437601 -6.53652 2.742277 170.27050
8 27.373900 -3.664126 1.156347 36.968902
9 96.360833 2.974862 2.310525 152.645578
9 108.015245 -4.306424 2.667651 113.96283
3 55.261755 -6.727791 0.970704 190.964604
1 52.988382 6.902256 1.430236 97.383340

2 2.663138 2.782467 0.111959 147.923603

4 139.913069 -3.690463 0.956186 143.73427
8 37.481259 -9.526205 0.102742 108.354876
7 40.561432 2.533573 1.711105 54.101457

4 36.023047 -7.778810 0.266028 152.194445
8 122.386297 8.136932 2.105072 176.946497
6 139.798412 -8.796644 0.437483 182.64005
1 49.466780 -8.467895 2.451192 57.357401
10 161.137762 7.532659 2.825202 165.72935

QO 00 0O 0O 0O O 0O O O 00 0O 0 0O O O O O 0 6 0 0 O O O O

28

Figure 7: Sample output from makerandomstaff program. The page image on the right shows 1000 randomly placed

staves on the page at the same time. Appendix II starting on page 52 contains the full listing of the 1000 staves.

For careful comparisons between SCORE EPS and simulated EPS files, it is necessary to
quantize the above staff data to 32-bit floating-point numbers. SCORE processes all data
numbers in this format, so the input to both printing programs should be quantize to 32-
bit floats first in order to avoid trivial differences due to quantizing 64-bit floating-point
numbers into 32-bit floats. Here is a C program that will quantize the example PMX da-

ta (but cannot handle SCORE text objects):

floatize.c

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

void printFloatLine (char* buffer) {
float value;
char* ptr;

int count = 0;
ptr = strtok(buffer, "™ \n\t");
while (ptr != NULL) {
if (!sscanf (ptr, "%f", &value))
printf ("ERROR\n") ;
exit (1)
}
if (count++ > 0) {
printf ("™ ");
}
printf ("$f", value);
ptr = strtok (NULL, "™ \n\t");

{

printf ("\n");

printFloatLine (buffer);

fclose (input) ;

}
int main(int argc, char** argv) {
if (argc < 2) {
return 1;
}
FILE *input;
input = fopen(argv([1l], "r");
char buffer[1024] = {0};
while (fgets(buffer, 1024, input) != NULL) {

29

Below is sample input and output from floatize. Note that the first line of the input data
ends in “5” while the float-quantized output’s first line ends in “3”.

QO 0O O 0O 0O CO O O O 0 O 0 0 O O o O

11 6.
11 2.
7 87.

198888 9.573973 0.283635 168.128405
873254 -4.797876 2.927321 70.601575
639369 7.994754 0.598376 165.502491

7 41.646249 2.260639 0.923335 81.354952

12 0.694142 8.659682 1.671497 9.091288

7 141.401669 3.957960 1.272665 156.293134
6 56.481524 4.920927 0.341730 167.857785
10 72.348165 0.396136 1.237993 160.695259
6 33.471906 2.824829 2.398684 35.839999

1 8.250568 7.964336 0.584617 174.530481

12 32.757540 9.446832 2.429939 87.284526
10 162.437601 -6.536518 2.742277 170.270498
8 27.373900 -3.664126 1.156347 36.968902
96.360833 2.974862 2.310525 152.645578
108.015245 -4.306424 2.667651 113.962831
55.261755 -6.727791 0.970704 190.964604
52.988382 6.902256 1.430236 97.383340

9
9
3
1
2 2.663138 2.782467 0.111959 147.923603

QO 00 0O 0O 0O CO 0O CO O O O 0 0O O O o O

O OO OO OO OODODOOOOOO oo

11.0 6.198888 9.573973 0.283635 168.128403
11.0 2.873254 -4.797876 2.927321 70.601578
7.0 87.639366 7.994754 0.598376 165.502487
7.0 41.646248 2.260639 0.923335 81.354950
12.0 0.694142 8.659682 1.671497 9.091288

7.0 141.401672 3.957960 1.272665 156.293137
6.0 56.481525 4.920927 0.341730 167.857788
10.0 72.348167 0.396136 1.237993 160.695251
6.0 33.471905 2.824829 2.398684 35.840000
1.0 8.250568 7.964336 0.584617 174.530487
12.0 32.757542 9.446832 2.429939 87.284523
10.0 162.437607 -6.536518 2.742277 170.270493
8.0 27.373899 -3.664126 1.156347 36.968903
9.0 96.360832 2.974862 2.310525 152.645584
9.0 108.015244 -4.306424 2.667651 113.962830
3.0 55.261757 -6.727791 0.970704 190.964600
1.0 52.988380 6.902256 1.430236 97.383339
2.0 2.663138 2.782467 0.111959 147.923599

To compare the finale EPS output from both SCORE and serstaffg, the following PERL

script was used:

epscompare.pl

#!/usr/bin/perl
use strict;

my Sepsfilel = SARGVI[O0];

my Sepsfile2 = SARGVI[1];

my @epshposl = getEpsCoordinates (Sepsfilel);
my @epshpos2 = getEpsCoordinates (Sepsfile2);
my S$sizel = (@epshposl;

my S$size?2 = @epshpos?2;

my @coordl;

my @coord2;

my @diff;
die "Coordinate count mismatch: $sizel $size2\n" if $sizel != S$size2;

for (my $i=0; Si<S$sizel; S$i++) {

@coordl = split(/\s+/, S$Sepshposl[$i]);

@coord2 = split(/\s+/, S$Sepshpos2[S$i]);

Sdiff[0] = $coordl[0] - S$coord2[0]; # horizontal difference
Sdiff[1l] = S$Scoordl[1l] - S$coord2[1l]; # vertical difference

if (abs($diff[0]) + abs($diff[1l]) !'= 0.0) { # print only if different

my S$Sline = int(($i % 10) / 2.0)+1;

my Sstaff = int($i / 10);

my $bin = $i % 2;

print "$staff: $line-$Sbin: ";

print " ($diff[0], S$diff[1l])";

print " =\t ($Scoordl[0], $coordl[1l])Scoordl[2] -\t";
print " ($coord2[0], S$coord2[1l])Scoord2[2]\n";

}

exit (0);

FHEHA AR AR F SR AA RS ARHER S

##

getEpsCoordinates -- extract all moveto and lineto coordinates from a
#4# SCORE EPS file.

##

sub getEpsCoordinates {
my ($file) = @ ;
my @output;
open (FILE, S$file) or die "Cannot read $file";
while (my $line = <FILE>) {
chomp S$line;
if ($line =~ /"\s* ([-\d\.]+)\s+ ([-\d\.]+)\s+m\s*$/) {
Soutput [@output] = "$1\ts$2\tm";
} elsif (Sline =~ /™\s*([-\d\.]+)\s+([=-\d\.]1+)\s+1\s*S/) {
Soutput [Qoutput] = "S1\tS$2\tl";
}
}
close FILE;
return Qoutput;

30

The epscompare script reports two quantization problems for the set of 1000 random staves

(staff #592, vertical position of 4™ staff line).

o o
<~ S
=
[l

(29336, -20782)1 - (29336, -20783)1

(20232, -20782)m - (20232, -20783)m

This quantization error could not be compensated for without causing more quantization

errors on other staves. It is most likely caused by a difference in the order of quantiza-
tions for the vertical spacing between SCORE and serstaffq, or a peculiarity within the
SCORE editor’s code.

31

9 Setstrokeadjust quantization effects

Section 0 covers the 4000-DPI internal quantization of SCORE EPS coordinates caused
by scaling the coordinate system by 0.018 (1/4000) and then rounding coordinates of all
points to integers (by truncating the fractional values rather than true rounding). An im-
portant secondary quantization effect takes place when the STROKEADJUST setting in
the SCORE print menu is set to “ves”. By default this stroke-adjust setting is turned on,
which causes the following PostScript code to be inserted into the EPS output data:

/setstrokeadjust where
{ pop true setstrokeadjust }
{ /m {
transform
.25 sub round .25 add exch
.25 sub round .25 add exch
itransform moveto
} bind def
/1 |
transform
.25 sub round .25 add exch
.25 sub round .25 add exch
itransform lineto
} bind def
} ifelse

This code translates into English as: “if the printing device knows about stroke adjust-
ment, then use its built-in adjustment feature; otherwise, emulate the basic functionality
of setstrokeadjust by quantizing to quarter-pixel boundary offsets in the rendering device’s
resolution”.

When emulating setstrokeadjust functionality, this code imposes a quantization spacing for
all coordinate points used by the m and 1 functions, including staff lines. The quantiza-
tion space is that of the rendering device. For example if the device is a 300 DPI printer,
the stroke adjustment will take place at that resolution, and all vector points used on the
page will be quantized to quarter-pixel offsets at 300 DPI. Note that the rendering reso-
lution 1s not inherently known when the vector-graphics are generated, only when the
actual conversion to a quantized space is realized. The transform PostScript function
temporarily moves the coordinate space into the absolute (continuous) positions of the
rendering device where the stroke-adjust quantization takes place. The itransform func-
tion reverses the process, taking the coordinate space back to the original one (the user-
coordinate space as Adobe calls it). In the renderer’s coordinate space, the coordinate
values are shifted "+ of a pixel down, then rounded to the nearest pixel, then back by
shifting up "4 of a pixel:

X y moveto => [round(device(x, dp1)-0.25) + 0.25] [round(device(y,dpi)-0.25)+0.25] moveto

There are two purposes for this code: (1) to allow all lines with the same thickness in con-
tinuous space to have also uniform thicknesses in a quantized space, and (2) to allow for
both even- an odd-pixel line quantization widths. If this stroke-adjustment code is not
used, any line placed at a pixel boundary in the rendering device must have a width that

32

is an even number of pixels, while lines placed at '/ pixels must have a width that is an
odd number of pixels. This will cause lines that have equal width in continuous space to
have unequal widths in a quantized space. Quantizing coordinates to the /4 pixel posi-
tions allows for pixelated lines to have the full range of even and odd widths (Figure 8) as
well as guarantees that the widths of horizontal and vertical lines remain equal after
quantization. Alternatively %4 pixel positions could also be used (see Figure 9). Here is the
Adobe explanation for setstrokeadjust:

“Why adjust to one quarter? Placing the path off center within the pixel
makes it possible for the device space line width to grow one pixel at a
time as the specified line width increases. Placing the path along the pixel
boundary forces all line widths to use an even number of pixels and to
grow two pixels at a time. Centering the path within the pixel forces all
line widths to use an odd number of pixels and also to grow two pixels at
a time.””

Figure 8 demonstrates the different line-width effects when quantizing lines at pixel
boundaries as well as centered in the middle of pixels. In both cases the quantized line
width can only increment by 2 pixels at a time. The quarter-pixel alignment of lines al-
lows for 1-pixel increments in line widths, thus minimizing quantization errors.

Pixel-boundary stroking Mid-pixel stroking
0 2—¢ 2+¢ 0 3—-¢ 3+¢
2 2 4 1 3 5

Quarter-pixel stroking

input width: input width:

output width: output width:

input width: O 1.5-¢ 1.5+¢

output width: 1 2 3

Figure 8: Quantization effects on continuous line widths when lines are centered at pixel edges, centers, and quarters.
When stroking a horizontal/vertical line at pixel boundaries, only even pixel widths are possible. When stroking lines
centered in the middle of pixels, only odd pixel widths are possible. Positioning lines at "4 (or ¥4) pixels allow for both
even and odd pixel widths for lines in the rendered coordinate space.

7 http:/ /partners.adobe.com/public/developer/en/ps/sdk/5111.Stroke_Adj.pdf, “Emu-
lation of the setstrokeadjust Operator” Technical Note #5111, 31 March 1992, Adobe
Systems, San Jose, California.

33

Figure 9 demonstrates the difference between using and not using stroke adjustment.
The left half of the figure does not use stroke adjustment. This causes the top line of the
staff to be one (or possibly two) pixels thinner than the other lines in the staff since the
vector-graphics lines can be positioned at random fractional pixel positions. The right-
half of the image shows the result of applying stroke-adjustment by quantizing the line
endpoint at quarter-pixel offsets in the rendering device before quantization takes place.

Figure 9: Example vector-graphic lines converted to bitmaps without stroke-adjustment on the left, and with
stroke-adjustment on the right. In the left-hand staff lines, the top line is one pixel thinner due to quantization
effects. This is compensated by the stroke adjustment process applied on the right.

Stroke-adjust placement of horizontal/vertical line endpoints can occur at four possible
locations within the pixel as shown in Figure 10. The left hand of the figure references
the origin of the pixel at the bottom left corner, while the right hand of the figure refer-
ences the top left corner. When doing more sophisticated stroke adjustments, these four
points may be utilized. For example in GhostScript’s stroke-adjustment code, the left
endpoint of horizontal lines are at the "4 pixel position, while the right endpoint is at the
%4 pixel position. This is to ensure that lines shorter than one pixel are not quantized to
be zero length.

1 —

P
Z2N R S S
A i -------- —
0 ' ; '

Figure 10: setStrokeAdjust pixel quantization locations within the rendering device’s pixel boundary.

34

Stroke-adjust implementations are probably device dependent. As a guideline I compare
against the method used in GhostScript, which is the primary open-source implementa-
tion of a PostScript vector-graphics to bitmap converter.® The source code for imple-
menting stroke adjustment in GhostScript is located in ghostpdl-9.06/gs/base.’ But
this code is overly generalized to be immediately readable, so reverse-engineering was
used instead to generate the following stroke-adjustment emulation.

The program serstaffg described in the previous section will match the output from
SCORE when comparing with 600 DPI bitmaps and when the stroke-adjust setting is
turned off. If the stroke-adjust setting in SCORE is turned on, the pixel behavior will be
slightly different. It is preferable to turn on the stroke-adjust setting in SCORE printing
(it 1s turned on by default) to make staff lines quantize with uniform thickness when print-
ing on paper or to a bitmapped image. The following program, called serstaffqg, shows
the final staff printing emulation program. This program calculates the continuous posi-
tion of staves, then it applies a 4000 DPI quantization to match SCORE’s printing behav-
ior, and then it applies a 600 DPI (or any arbitrary rendering resolution) quantization
plus quarter-pixel offsets to match the behavior of the stroke-adjust functionality usually

included in SCORE EPS output.
scrstaffqq.pl

#!/usr/bin/perl

Programmer: Craig Stuart Sapp <craig@ccrma.stanford.edu>
Creation Date: Mon Oct 15 09:18:12 PDT 2012

Last Modified: Mon Nov 19 14:12:58 PST 2012

Filename: scrstaffqqg

Syntax: perl 5

Description: Print staff lines from SCORE PMX data, applying 4000 DPI
quantization (emulating printing method of SCORE), and then applying
stroke-adjust quantization (emulating stroke-adjust feature of bitmap
rendering device).

Basic command-line options:
-Q == Turn off 4000-DPI quantization of coordinates.

-S == Turn off stroke-adjust quantization.

-E == Don't echo input SCORE PMX data in output content.

-p == Plain output: width, x1, yl, x2, y2 info for lines

-f == Flip origin to top left of page [using letter-sized paper (11")]

Print parameters:
-b # == Set bottom margin (in inches, excluding extra 0.0625" offset).

-1 # == Set left margin (in inches, excluding extra 0.025" offset).

-s # == Set page scaling (default 1.0, scaling excludes margin offsets).
-d # == Set DPI related to -w (line width) wvalue.

-w # == Set line with in pixels of -d option's DPI wvalue.

-r # == Set renderer DPI for use with stroke-adjust quantization.

-o # == Set the output DPI (usually equivalent to -r setting).

S oS e SR SR SR S e e S SR SR S o o S e o SR o o e SR SR SR S o o

8 http://en.wikipedia.org/wiki/ Ghostscript, http://www.ghostscript.com/download, and
http://www.gnu.org/software/ghostscript .
9 http://downloads.ghostscript.com/public/ghostpdl-9.06.tar.gz

35

use strict;
use POSIX;
use Getopt::Long;

my S$noquantize 0; # used with -Q option
my Snostrokeadjust = 0; # used with -S option
my SechoQ = 0; # used with -E option
my Splain = 0; # used with -p option

my ($BM, SLM, $S, $DPI, SLINE width, $rDPI, $oDPI, S$debugQ, $originflipQ);
my $strokeadjustCodeQ = 0; # used with --stroke-adjust option
Getopt::Long::Configure ("bundling");

GetOptions (
'Q|no-quant' => \$noquantize,
'S|no-stroke' => \S$nostrokeadjust,
'plplain' => \$plain,
'florigin-flip' => \$SoriginflipQ,
'E|no-echo' => \S$echoQ,
'b|B|bottom-margin:f'=> \$BM,
'l1|L]left-margin:f' => \SLM,
's|scale|size:f' => \$S,
'd|dpi|DPI:i' => \S$DPI,

'o|output-dpi|oDPI:1i'=> \S$oDPI,
'r|rdpi|rDPI|RDPI:1' => \S$rDPI,

'wllw|line-width:i' => \$LINE width,
'stroke-adjust’' => \$strokeadjustCodeQ,
'debug’ => \$debugQ
) ;
SechoQ = !$echoQ; # reverse truth state since input is "not echo".

Set default command-line options for SCORE print options:

$SoDPI = $rDPI 1if $oDPI =~ /"\s*$/;

SLINE width = int(4 * SDPI / 600.0 +
SLINE width = 1 if $LINE width == 0;
my S$PAGEHEIGHT = 11.0; # page height in inches (used with -f option).

Final output rendering DPI
.5); # 1if SLINE width =~ /"\s*$/;

$BM = 0.75 if $BM =~ /™\s*$/; # SCORE bottom-margin setting
SLM = 0.50 if $1LM =~ /™\s*$/; # SCORE left-margin setting
$s = 1.00 if $s =~ /™\s*$/; # SCORE page scale setting
SrDPI = 600 if $rDPI =~ /"\s*$/; # Actual bitmap rendering DPI
$SDPI = $rDPI if $SDPI =~ /"\s*$/; # SCORE target rendering DPI
#
0

Other command-line options:

my Squant4000 = !$noquantize; # simulate SCORE EPS quantization at 4000
DPI

my S$strokeadj

!'$Snostrokeadjust; # simulate SCORE STROKEADJUST parameter

SCORE print menu variables (most now set via command-line options):

$s = 1.0; # global music scaling

SLM = SILM * 72.0; # left margin

$BM = SBM * 72.0; # bottom margin

SDPI = 600; # target print resolution

SLINE width = 4; # pixel width of line strokes

my $small line = SLINE width - 1; # pixel width of staff lines when P5 < 0.65
$small line = 1 if $small line == 0;

my $StrokeBig = SLINE width / $DPI * $oDPI;

my $StrokeSmall= $small line / $DPI * S$oDPI;

36

Constants, expressed in points:

my SLx = 0.025 * 72.0; # left margin buffer

my S$Bx = 0.0625 * 72.0; # bottom margin buffer

my SLen = 7.5 * 72.0; # default full length of staff

my S$Step = 0.04375 * 72.0; # vertical diatonic step size

my SVx = 0.7875 * 72.0; # default spacing of successive staves

my $dpi72to4000 = 4000.0 / 72.0; # conversion factor from points to 4000 DPI
my Shoffset4000 = (SLM + S$SLx) * $dpi72to4000; # default is 2100

my Svoffsetd4000 = ($BM + $Bx + 6 * 72) * $dpi72to4000; # default is 27250

4000-quantize new origin (6" above bottom left margin origin)
my Shoffset4000g = int (Shoffset4000) ;
my Svoffset4000g = int ($voffsetd4000);

#S$Stroke += 0.0007206; # Match line thickness behavior in SCORE.

#S$Stroke *= $dpi72to4000; # In practice this small offset is not necessary.
my SLW = $StrokeBig; # Variables for keeping track of stroke width which
my S$SoldLW = $StrokeBig; # is needed since gsave/grestore are not used.

if (!S$plain) {

print "$!PS-Adobe-2.0 EPSF-1.2\n"; # print PostScript marker

print PostScript functions:

print "/m {moveto} def\n";

print "/1 {lineto} def\n";

print "/s {stroke} def\n";

print "/lw {setlinewidth} def\n";

print "/tr {translate} def\n";

if (SstrokeadjustCodeQ) {

print <<"EOT";

/setstrokeadjust where
{ pop true setstrokeadjust }
{ /m { transform .25 sub round .25 add exch .25 sub round .25 add exch
itransform moveto } bind def
/1 { transform .25 sub round .25 add exch .25 sub round .25 add exch
itransform lineto } bind def } ifelse
EOT

}

print "\ngsave\n";
print 72.0/$0DPI, " dup scale\n";
print "SLW lw\n";

}

while (my $line = <>) {
next if $line !~ /"8/;
printStaffObject ($line) ;
}

if (!S$plain) {
print "grestore\n";
print "showpage\n";
}
exit (0);

FE R R A R R R R R R R R R R R

37

FHEHA AR AR F AR AR S

#4#
printStaffObject -- Place a staff on the page based on its SCORE
#4# PMX data.
#4#
sub printStaffObject {
my ($line) = @ ;
chomp S$line;
my @data = split(/\s+/, S$line);
my ($P1, $P2, S$P3, $P4, $P5, S$P6) = @data;
SP1 *= 1; $P2 *= 1; $P3 *= 1; $P4 *= 1; $SP5 *= 1; $P6 *= 1;
SP5 = 1.0 if $P5 == 0.0;
$P6 = 200.0 if $P6 == 0.0;
my Swidth = $S * (SLen* ($P6-$P3)/200.0);
my Shlpos = $SLM + SLx + $S * ($Len*$P3/200.0);
my S$Svpos = $BM + $Bx + $S* (($SP2-1) *$Vx+S$P4*$SP5*SStep) ;

my Slspace $Step * 2 * $P5 * $S; # spacing between staff lines

scale to 4000-DPI coordinates (from 72-DPI coordinates):

Shlpos = S$hlpos * $dpi72to4000;

Svpos = Svpos * $dpi72t04000;

Swidth = S$Swidth * $dpi72to4000;
*

$lspace = S$lspace $dpi72t04000;
print the original SCORE PMX data for the staff:
print "$SCORES%", join(™ "™, @data), "\n" if SechoQ;

if the stroke width has changed, print it. This code is hard-coded
and should be generalized. But 20.03 is equal to 3 pixels at 600 dpi
(one less than default staff line width), plus a small extra amount.
SLW = $StrokeBig;
SILW = $StrokeSmall if $P5 < 0.65;
if (!$plain) {
if (SLW != $oldLW) {
printf (" %$.41f 1w\n", SLW);
$oldLW = SLW;

}

print the staff on the page according to the PMX parameters:
printStaffLines (5, $hlpos, $width, S$vpos, S$P5);

FHEHA AR AR F SR AA RS AR HES S

#4#

printStafflLines -- print the specified number of lines with the given
#4# vertical spacing between lines.

#4#

sub printStafflines {
my ($Scount, S$hlpos, S$width, $vbottom, $P5) = @ ;

my ($vpos, $vposq);

38

my Svorigin = $vbottom;
my Shrposqg;

The bottom staff line of the staff is at vertical unit "3" in SCORE.
Shift the origin down 3 steps from the bottom line of the staff.

the default diatonic-step size is 175 units at 4000 DPI (3.15pt)

my Sdiatonicstep = 175 * $P5;

$vorigin = $vorigin - 3.0 * Sdiatonicstep;

print staff lines at diatonic steps 3, 5, 7, 9, 1l1:
for (my $i=3; $i<=11; $i+=2) ({

variables for quantized versions of values:

my Shlposqg = Shlpos;
my Svbottomg = $vbottom;
my S$widthg = Swidth;

compensate for quantization problems near integers:
Shlposqg -= 0.001 if Shlposg < 0;

Shlposg += 0.001 if Shlposg > 0;

if (Squant4000) {

Shlposqg = int ($Shlposq) ;
Swidthg = int (Swidthq);
Svbottomg = int ($vbottomq) ;

}
Shrposqg = S$Swidth + $hlpos;

compensate for quantization problems near integers:
Shrposg -= 0.0001 if $hrposq < 0;

Shrposqg += 0.0001 if Shrposqg > O0;

Shrposqg = int($hrposq) if $quant4000;

Svpos = S$Svorigin + $i * $diatonicstep;

Svposqg = $vpos;

compensate for quantization problems near integers:
Svposg -= 0.0001 if $vposq < 0;

Svposqg += 0.0001 if $vposq > O0;

Svposqg = int ($vposqg) if $quant4000;

avoid small numbers such as -1e8 when not quantizing:
if (!Squant4000) {

Shlposg = 0 if $hlposqg =~ /e/i;

Shrposqg = 0 if S$hrposqg =~ /e/i;

Svposqg 0 if $vposg =~ /e/i;

}

if (Sstrokeadj) {
Shlposg = setStrokeAdjust (Shlposqg, 4000, S$rDPI, $oDPI, +1);

Shrposqg = setStrokeAdjust (Shrposq, 4000, S$rDPI, $oDPI, -1);

Svposqg = setStrokeAdjust (Svposq, 4000, S$rDPI, $oDPI, -1);
} else {

Shlposqg = $hlposq / 4000 * $SoDPI;

Shrposqg = S$hrposqg / 4000 * $oDPI;

Svposg = $vposg / 4000 * $SoDPI;

39

if (SoriginflipQ) {
Svposqg = S$PAGEHEIGHT * $oDPI - S$Svposqg;
}

if ($plain) {
print "S$LW\tShlposg\t$vposg\tShrposg\tSvposg\n";
} else {
print " S$hlposqg $vposq m\n";
print " S$hrposqg $vposq 1\n";
}
}

print " s\n" if !$plain;

FHEHA AR AR AA SRS S S

##

setStrokeAdjust -- Quantize a coordinate to the nearest pixel boundary
#4# in the target rendering resolution plus a quarter-pixel offset.
#4# Svalue = Input value to quantize.

#4# Sinputscale = Usually SCORE's 4000-DPI coordinate quantization.

#4# SrenderDPI
#4# Soutputscale

Rendering DPI, usually 600 DPI.
Target DPI for rendered bitmap of page, usually 600 DPI.

Sdirection = Whether or not to reflect axis before quantizing.
direction = +1 : Horizontal coordinate (left end of horizontal line)
#4# direction = -1 : Vertical coordinate (bitmap origin at top of page)
#4# also used for right end of horizontal line.

sub setStrokeAdjust {
my ($value, S$inputscale, S$renderDPI, S$Soutputscale, S$direction) = @ ;

convert to rendering coordinate space:
my Sdevicepos = $direction*$value/S$inputscale*$SrenderDPI;

quantize to nearest pixel boundary + 1/4 pixel
(not exactly nearest, but this emulates better):
Sdevicepos = floor ($devicepos) + 0.25;

convert to the output coordinate space
(possibly different from rendering or input DPI).
my Snewvalue = $devicepos/SrenderDPI*Soutputscale;

Snewvalue = $direction*S$newvalue;

This gives minimally better results for some reason,

but could be removed for elegance.

if (abs(Snewvalue - int (S$Snewvalue) - 0.75) < 0.0001) {
$newvalue -= 0.50;

}

if (SdebugQ) {
print "$VALUE: $value => S$newvalue\n";

}

return $newvalue;

40

The serstaffqgq program does a relatively good job of emulating the stroke-adjust function-
ality of GhostScript. Only a 1-pixel difference in the vertical placement of one staff line
can be see in the difference images on the right side of Figure 11. This difference is due
either to a quantization bug in serstaffgq or it does not completely emulate GhostScript’s
stroke-adjusting system.

Random staff placement test Random staff placement test

Figure 11: Evaluation of the accuracy for serstaffgg to match the pixel placement of staff lines, compared to
converting SCORE EPS files into TIFF images with GhostScript. Image on the left shows the original image,
while the image on the right is the difference between the SCORE EPS and the simulated EPS generated by
serstaffqg. Compare to Figure 5 on page 22.

41

10 Pixel localization of staves in TIFF images

As discussed in Section 1 (starting on page 19), EPS output from SCORE can be convert-
ed into bitmapped images, such as the TIFF images used for evaluating staff-placement
algorithms in this document. The serstaffgq program listed in the previous section can be
used to predict the exact pixel placement of staff lines in these EPS conversions into TIFF
images using GhostScript to render the PostScript code into bitmaps. The -p and -£ op-
tions can be used together to output the pixel-based locations of staff lines in the resulting
TIFF image. The -p option is used to output a “plain” listing of the instructions to draw
staff lines. The -f option is used to flip the origin so that the top left corner of the TIFF
image is the origin (bitmapped images typically are defined with the top left corner of the
image used as the origin, while PostScript defines the bottom left corner of the page as the
origin). Here is example input and output data for the 8™ staff in the random.pmx exam-
ple from Figure 4 on page 22:

echo "8 8 101.45 0 .00 102.36" | ./scrstaffqq -pf
$SCORE%8 8 101.45 0 .00 102.36

4 2597.25 2805.75 2618.25 2805.75
4 2597.25 2752.75 2618.25 2752.75
4 2597.25 2700.75 2618.25 2700.75
4 2597.25 2647.75 2618.25 2647.75
4 2597.25 2595.75 2618.25 2595.75

The output from serstaffgq contains the position information for the five lines of the staff
from the bottom up, as well as the line width for stroking these lines. The five columns of
numbers in the data of the above example:
1. Line width in pixels.
Left horizontal position of line (all in pixels).
3. Left vertical position of line (origin at top left corner of image when —f option is
used).
4. Right horizontal position of line.
5. Right vertical position of line (which should be the same as column #3).

The left and right horizontal pixel positions of the lines can be directly read from data.
For example each line starts at horizontal position 2597.25 pixels (column #2) and goes to
horizontal position 2618.25 (column #4). The fractional positions are due to the stroke-
adjust processing. Drop the fractional part of the pixel number to determine the final po-
sition in the bitmap. So the staff lines start at horizontal pixel 2597 and go through pixel
2618.

To determine the starting/ending points vertically, half of the line width (column #1)
needs to be subtracted/added from the vertical position of the line (columns #3 and #5):

Top vertical pixel = floor (#3 - #1/2)

42

Bottom vertical pixel = floor (#3 + #1/2)

In this example the top pixel is floor(2805.75 — 4/2) = floor(2803.75) = 2803. The bot-
tom vertical pixel in the staff line is floor(2805.75 + 4/2) = floor(2805.75) = 2805. Figure
12 shows the verification of these calculations by examining the rendered TIFF image of
the this particular staff line in Adobe Photoshop:

B Adobe Photoshop - [random-600.tif @ 1600%] (=)}
-8 X

E File Edit Image Layer Select Filter VYiew Window Help
i]4 |259€ |2598 |2600 2602 [2604 2606 [2608 2610 [2612 2614 |2616 2618 |2620 |2622 |2 ‘ﬂ

2597 2618
2803
2805
2807
=i
[Mavigator Y Info __Options I)
K: 58% C: B53%
M: 42%
A Yoo 4%
K: 28%
w
=i
o
I] * 4
1600% | Doc: 32.2M714.4M } Click and drag to draw freeform. Use Shift, Alt, and Ctrl for additio

Figure 12: Bottom line of example staff viewed as a rendered TIFF bitmap in Adobe Photoshop. The two red
pixels at both ends of the staff line are the coordinates that specify the staff line in the output data for the staff
line which is calculated by serstaffg .

The pixel boundaries of the entire staff’ can also be calculated from the output of
“scrstaffqq —-pf”. In this case the left/right positions are the same as all individual
staves, while the top pixel positions are the top vertical pixel position of the top staff line,
and the bottom pixel position of the staff is the bottom vertical pixel position of the bot-
tom staff line:

Top pixel of staff: floor(2595.75 — 4/2) = floor(2593.75) = 2593

Bottom pixel of staff: floor(2805.75 + 4/2) = floor(2807.75) = 2807

Thus top left and bottom right coordinates of the staff'in the TIFF image are:

Top left position: (2597, 2597)
Bottom right position: (2618, 2807)

And the horizontal and vertical width of the full staff (a very short staff) is:

Horizontal width: 2618 — 2597 + 1 = 22 pixels
Vertical width: 2807 — 2597 + 1 = 215 pixels

43

The following PERL script, called fulitestaff, can be used to highlight staves in TIFF imag-
es generated from SCORE EPS files. The /ulitestaff program takes input data generated
by “scrstaffqq —pf” as just described. The Ailitestaff program takes the individual staff
lines and groups them into staves to calculate the bounding box within the TIFF images
for each staff on the page.

hilitestaff.pl

#!/usr/bin/perl

#
Programmer: Craig Stuart Sapp <craig@ccrma.stanford.edu>
Creation Date: Tue Nov 20 06:28:41 PST 2012
Last Modified: Tue Nov 20 16:20:14 PST 2012
Filename: hilitestaff
Syntax: perl 5
#
Description: Input staff-line position data from "scrstaffgg -pf" and
a TIFF ima<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>